Vertikaler Fall mit Luftwiderstand

Mit Luftwiderstand wirken zwei Kräfte auf den Körper.

Formel für Luftwiderstand

Für die Luftwiderstandskraft gilt näherungsweise:

Die Luftwiderstandskraft nimmt quadratisch mit der Geschwindigkeit v zu. Die restlichen Konstanten haben folgende Bedeutung:

1) Beschleunigung berechnen

Die Beschleunigung wird geschwindigkeitsabhängig. Leite einen Ausdruck für die Beschleunigung in Abhängigkeit der Geschwindigkeit her.

Lösung:

Die resultierende Kraft auf den fallenden Körper beträgt

Für die Beschleunigung folgt

Ein Zeitschritt

Da die Beschleunigung sich zeitlich ändert, kann die mittelere Geschwindigkeit während eines Zeitschritts nicht mehr einfach ausgerechnet werden. Wir verwenden für den ganzen Zeitschritt die Geschwindigkeit v_alt zu Beginn des Zeitschritts. Wird ein kleiner Wert für den Zeitschritt verwendet, wird der Fehler nur klein.

Neue Geschwindigkeit

Die Geschwindkeit v neu für den kommenden Zeitschritt berechnet sich mit der Beschleunigung:

Neuer Ort

In einem Zeitschritt wird die Strecke

zurückgelegt. Für den Ort am Ende des Zeitschritts folgt:

2) Umsetzen in Python

Das Programmgerüst fall_luftwiderstand.py (Codegerüst) enthält die Werte für eine Eisenkugel mit Radius 1cm.

Ergänze den Code innerhalb der while-Schleife entsprechend.

Lösung:

freier_fall_luftwiederstand.txt

3) Interpretation

Das Diagramm zeigt das Simulationsergebnis für die fallende Eisenkugel mit 1cm Radius.

From:

https://infl.ch/ - Informatik am Alpenquai

Permanent link:

https://infl.ch/t/weh/vertikaler fall mit luftwiederstand?rev=1710927747

Last update: **2024/03/20 10:42**

https://infl.ch/ Printed on 2025/12/01 11:39